Vector Form of a Line -

Let ℓ be a line and let \vec{d} and \vec{p} be vectors. If $\ell = {\vec{x} : \vec{x} = t\vec{d} + \vec{p} \text{ for some } t \in \mathbb{R}}$, we say the vector equation

$\vec{x} = t\vec{d} + \vec{p}$

is ℓ expressed in *vector form*. The vector \vec{d} is called a *direction vector* for ℓ .

11

DEFINITION

- Let $\ell \subseteq \mathbb{R}^2$ be the line with equation 2x + y = 3, and let $L \subseteq \mathbb{R}^3$ be the line with equations 2x + y = 3 and z = y.
- 11.1 Write ℓ in vector form. Is vector form of ℓ unique?
- 11.2 Write *L* in vector form.
- 11.3 Find another vector form for *L* where both " \vec{d} " and " \vec{p} " are different from before.

Let A, B, and C be given in vector form by

12

$$\overbrace{\vec{x}=t \begin{bmatrix} 1\\2\\3 \end{bmatrix} + \begin{bmatrix} 0\\0\\1 \end{bmatrix}}^{A} \qquad \overbrace{\vec{x}=t \begin{bmatrix} -1\\1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1\\2 \end{bmatrix}}^{A} \qquad \overbrace{\vec{x}=t \begin{bmatrix} 2\\-1\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\1 \end{bmatrix}}^{A}.$$

- 12.1 Do the lines *A* and *B* intersect? Justify your conclusion.
- 12.2 Do the lines *A* and *C* intersect? Justify your conclusion.
- 12.3 Let $\vec{p} \neq \vec{q}$ and suppose *X* has vector form $\vec{x} = t\vec{d} + \vec{p}$ and *Y* has vector form $\vec{x} = t\vec{d} + \vec{q}$. Is it possible that *X* and *Y* intersect?