Vector Form of a Line

Let ℓ be a line and let \vec{d} and \vec{p} be vectors. If $\ell=\{\vec{x}: \vec{x}=t \vec{d}+\vec{p}$ for some $t \in \mathbb{R}\}$, we say the vector equation

$$
\vec{x}=t \vec{d}+\vec{p}
$$

is ℓ expressed in vector form. The vector \vec{d} is called a direction vector for ℓ.

Let $\ell \subseteq \mathbb{R}^{2}$ be the line with equation $2 x+y=3$, and let $L \subseteq \mathbb{R}^{3}$ be the line with equations $2 x+y=3$ and $z=y$.
11.1 Write ℓ in vector form. Is vector form of ℓ unique?
11.2 Write L in vector form.
11.3 Find another vector form for L where both " \vec{d} " and " \vec{p} " are different from before.

Let A, B, and C be given in vector form by

$$
\overbrace{\vec{x}=t\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}^{A} \overbrace{\vec{x}=t\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right]}^{B} \quad \overbrace{\vec{x}=t\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}^{C} .
$$

12.1 Do the lines A and B intersect? Justify your conclusion.
12.2 Do the lines A and C intersect? Justify your conclusion.
12.3 Let $\vec{p} \neq \vec{q}$ and suppose X has vector form $\vec{x}=t \vec{d}+\vec{p}$ and Y has vector form $\vec{x}=t \vec{d}+\vec{q}$. Is it possible that X and Y intersect?

